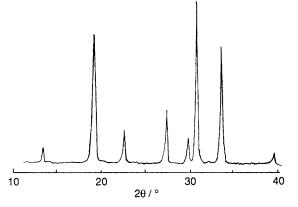
A New Hydrothermal Route for the Preparation of Na₄Zr₂(SiO₄)₃

Yue Yong* and Pang Wenqin


Department of Chemistry, Jilin University, Changchun, PRC 130023

 $Na_4Zr_2(SiO_4)_3$ has been prepared hydrothermally from the reaction of $NaZr_2(PO_4)_3$ with Na_2SiO_3 under lower temperature and pressure conditions of crystallization than used previously, and identified by X-ray powder diffraction, and Raman and ²⁹Si MAS NMR spectroscopy.

 $Na_4Zr_2(SiO_4)_3$ is the end member of the Nasicon family¹ ($Na_{1+x}Zr_2Si_xP_{3-x}O_{12}$; x = 0—3), in which SiO₄ replaces PO₄ completely, and has been synthesized by different methods. Hydrothermal preparations of $Na_4Zr_2(SiO_4)_3$ from the $Na_2O-ZrO_2-SiO_2-H_2O$ system have been studied by Alyamovakaya and Genet *et al.*,^{2,3} but these were generally carried out at

300-600 °C with a pressure of >400 bar,⁴ making it difficult to obtain a pure Na₄Zr₂(SiO₄)₃ phase.

Recently we have synthesized $NaZr_2(PO_4)_3$, the other end member of the Nasicon family, by hydrothermal crystallization at 250 °C. We thought that $Na_4Zr_2(SiO_4)_3$ could be obtained by substitution of SiO₄ for PO₄ in $NaZr_2(PO_4)_3$

Figure 1. X-Ray diffraction pattern of Na₄Zr₂(SiO₄)₃ prepared from NaZr₂(PO₄)₃ (Cu- K_{α} , λ 1.5418 Å).

under conditions such that the content of zirconium was constant, and the reactions of $NaZr_2(PO_4)_3$ with Na_2SiO_3 in excess of NaOH under hydrothermal conditions have therefore been investigated. We now report the results of these experiments and the characterization of the product.

The hydrothermal reaction of NaZr₂(PO₄)₃ with Na₂SiO₃ was carried out in an autoclave with a Teflon liner. Na₂SiO₃ was dissolved in deionized water, and NaZr₂(PO₄)₃ and excess of NaOH were added. The ratio of NaZr₂(PO₄)₃ to Na₂SiO₃ was 1:3.5—4. The autoclave was *ca*. 60% filled so that the pressure reached *ca*. 120 atm. Heating at 290—300 °C for 48—72 h led to the main reaction (1) occurring. The products were filtered off washed, and dried in air.

$$NaZr_2(PO_4)_3 + 3 Na_2SiO_3 + 6 NaOH \rightarrow Na_4Zr_2(SiO_4)_3 + 3 Na_3PO_4 + 3 H_2O \quad (1)$$

X-Ray powder diffraction of the samples (Figure 1) gave the characteristic pattern of $Na_4Zr_2(SiO_4)_3$, which is identical to that published by Tran Qui *et al.*⁵ The Raman spectrum of the products (Figure 2) was similar to that already published.³ To investigate the state of silicon in the product, the high-

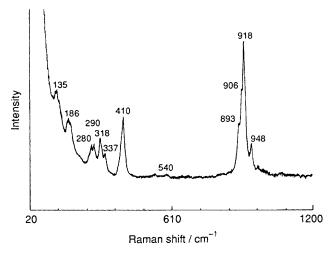


Figure 2. Raman spectrum of the product (excitation at 488.0 nm; 100 mW).

resolution solid-state ²⁹Si magic-angle-spinning NMR spectrum was recorded (Bruker MSL-400 spectrometer; 79.46 MHz). The spectrum showed a single line at 88.6 ppm relative to SiMe₄, corresponding to that in previous work,⁶ indicating that only substitution of silicon for phosphorus had occurred. All measurements have therefore confirmed that Na_4Zr_2 -(SiO₄)₃, prepared by the new hydrothermal route, is a stoicheiometric and pure compound.

Received, 14th March 1990; Com. 0/01141J

References

- 1 H. Y.-P. Hong, Mater. Res. Bull., 1976, 11, 173.
- 2 K. V. Alyamovskaya and V. G. Chuklantsev, Izvest. Akad. Nauk SSSR., Neorg. Mat., 1970, 1437.
- 3 F. Genet and M. Barj, Solid State Ionics, 1983, 891.
- 4 G. Baussy, R. Caruba, A. Baumer, and G. Turge, Bull. Soc. Fr. Miner. Crist., 1973, 97, 433.
- 5 D. Tran Qui, J. J. Capponi, J. C. Joubert, and R. D. Shannon, J. Solid State Chem., 1981, **39**, 219.
- 6 S. Barth and A. Feltz, Solid State Ionics, 1988, 26, 189.